Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The existence of patterns in population dynamics across species geographic ranges and climatic niches is a pervasive idea in ecology. Population variability (i.e. temporal variability in population density) should hypothetically increase near range edges or niche limits because of less suitable environments in these areas, but the occurrence of such patterns remains largely unexplored. Further, fluctuations in temperature could pose demographic constraints on populations and also influence their variability. We used Breeding Bird Survey data to show that the population variability of 97 resident North American birds consistently increases towards their niche limits and in areas with more variable temperatures, but not towards their geographic range edges. However, our model has limited explanatory power, and phylogenetic history and species traits could not explain these results. These findings suggest that other factors, such as biotic interactions and resource availability, might be more important drivers of population variability in resident North American birds.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Communities that are farther away from one another in distance or time tend to be more dissimilar. These relationships are often referred to as ‘distance–decay' relationships, relating compositional dissimilarity of communities to geographic distance or exploring compositional shifts through time at a single site. The data required to explore both relationships simultaneously – and their potential interactions – require standardized sampling through time across a set of geographically unique sites. We used data on five taxonomic groups sampled between 2013 and 2021 as part of the National Ecological Observatory Network (NEON) to explore evidence for geographic and temporal distance–decay relationships. Links between these relationships were explored by estimating the temporal consistency of geographic distance–decay relationships and estimating the strength of geographic patterns in temporal distance–decay relationships. Overall, we found evidence for geographic and temporal distance–decay relationships across the five studied taxa, but detected no temporal signal in geographic distance–decay relationships and no spatial signal in temporal distance–decay relationships. Together, this highlights that community composition changes across geographic and temporal gradients, but that the drivers of these changes may depend on different drivers at different scales.more » « less
-
Abundance–occupancy relationships predict that species that occupy more sites are also more locally abundant, where occupancy is usually estimated following the assumption that species can occupy all sampled sites. Here we use the National Ecological Observatory Network small-mammal data to assess whether this assumption affects abundance–occupancy relationships. We estimated occupancy considering all sampled sites (traditional occupancy) and only the sites found within the species geographic range (spatial occupancy) and realized environmental niche (environmental occupancy). We found that when occupancy was estimated considering only sites possible for the species to colonize (spatial and environmental occupancy) weaker abundance–occupancy relationships were observed. This shows that the assumption that the species can occupy all sampled sites directly affects the assessment of abundance–occupancy relationships. Estimating occupancy considering only sites that are possible for the species to colonize will consequently lead to a more robust assessment of abundance–occupancy relationships.more » « less
An official website of the United States government
